We propose PROPAGATE, a fast approximation framework to estimate distance-based metrics on very large graphs such as the (effective) diameter, the (effective) radius, or the average distance within a small error. The framework assigns seeds to nodes and propagates them in a BFS-like fashion, computing the neighbors set until we obtain either the whole vertex set (the diameter) or a given percentage (the effective diameter). At each iteration, we derive compressed Boolean representations of the neighborhood sets discovered so far. The PROPAGATE framework yields two algorithms: PROPAGATE-P, which propagates all the $s$ seeds in parallel, and PROPAGATE-s which propagates the seeds sequentially. For each node, the compressed representation of the PROPAGATE-P algorithm requires $s$ bits while that of PROPAGATE-S only $1$ bit. Both algorithms compute the average distance, the effective diameter, the diameter, and the connectivity rate within a small error with high probability: for any $\varepsilon>0$ and using $s=\Theta\left(\frac{\log n}{\varepsilon^2}\right)$ sample nodes, the error for the average distance is bounded by $\xi = \frac{\varepsilon \Delta}{\alpha}$, the error for the effective diameter and the diameter are bounded by $\xi = \frac{\varepsilon}{\alpha}$, and the error for the connectivity rate is bounded by $\varepsilon$ where $\Delta$ is the diameter and $\alpha$ is a measure of connectivity of the graph. The time complexity is $\mathcal{O}\left(m\Delta \frac{\log n}{\varepsilon^2}\right)$, where $m$ is the number of edges of the graph. The experimental results show that the PROPAGATE framework improves the current state of the art both in accuracy and speed. Moreover, we experimentally show that PROPAGATE-S is also very efficient for solving the All Pair Shortest Path problem in very large graphs.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员