Alzheimer's disease and related dementias(ADRD) affect nearly five million older adults in the United States, yet more than half remain undiagnosed. Speech-based natural language processing(NLP) offers a scalable approach for detecting early cognitive decline through subtle linguistic markers that may precede clinical diagnosis. This study develops and evaluates a speech-based screening pipeline integrating transformer embeddings with handcrafted linguistic features, synthetic augmentation using large language models(LLMs), and benchmarking of unimodal and multimodal classifiers. External validation assessed generalizability to a MCI-only cohort. Transcripts were drawn from the ADReSSo 2021 benchmark dataset(n=237, Pitt Corpus) and the DementiaBank Delaware corpus(n=205, MCI vs. controls). Ten transformer models were tested under three fine-tuning strategies. A late-fusion model combined embeddings from the top transformer with 110 linguistic features. Five LLMs(LLaMA8B/70B, MedAlpaca7B, Ministral8B,GPT-4o) generated label-conditioned synthetic speech for augmentation, and three multimodal LLMs(GPT-4o,Qwen-Omni,Phi-4) were evaluated in zero-shot and fine-tuned modes. On ADReSSo, the fusion model achieved F1=83.3(AUC=89.5), outperforming transformer-only and linguistic baselines. MedAlpaca7B augmentation(2x) improved F1=85.7, though larger scales reduced gains. Fine-tuning boosted unimodal LLMs(MedAlpaca7B F1=47.7=>78.7), while multimodal models performed lower (Phi-4=71.6;GPT-4o=67.6). On Delaware, the fusion plus 1x MedAlpaca7B model achieved F1=72.8(AUC=69.6). Integrating transformer and linguistic features enhances ADRD detection. LLM-based augmentation improves data efficiency but yields diminishing returns, while current multimodal models remain limited. Validation on an independent MCI cohort supports the pipeline's potential for scalable, clinically relevant early screening.
翻译:暂无翻译