We pose the fine-grained hardness hypothesis that the textbook algorithm for the NFA Acceptance problem is optimal up to subpolynomial factors, even for dense NFAs and fixed alphabets. We show that this barrier appears in many variations throughout the algorithmic literature by introducing a framework of Colored Walk problems. These yield fine-grained equivalent formulations of the NFA Acceptance problem as problems concerning detection of an $s$-$t$-walk with a prescribed color sequence in a given edge- or node-colored graph. For NFA Acceptance on sparse NFAs (or equivalently, Colored Walk in sparse graphs), a tight lower bound under the Strong Exponential Time Hypothesis has been rediscovered several times in recent years. We show that our hardness hypothesis, which concerns dense NFAs, has several interesting implications: - It gives a tight lower bound for Context-Free Language Reachability. This proves conditional optimality for the class of 2NPDA-complete problems, explaining the cubic bottleneck of interprocedural program analysis. - It gives a tight $(n+nm^{1/3})^{1-o(1)}$ lower bound for the Word Break problem on strings of length $n$ and dictionaries of total size $m$. - It implies the popular OMv hypothesis. Since the NFA acceptance problem is a static (i.e., non-dynamic) problem, this provides a static reason for the hardness of many dynamic problems. Thus, a proof of the NFA Acceptance hypothesis would resolve several interesting barriers. Conversely, a refutation of the NFA Acceptance hypothesis may lead the way to attacking the current barriers observed for Context-Free Language Reachability, the Word Break problem and the growing list of dynamic problems proven hard under the OMv hypothesis.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员