In the locust's lobula giant movement detector neural pathways, four categories of inhibition, i.e., global inhibition, self-inhibition, lateral inhibition, and feed-forward inhibition, have been functionally explored in the context of looming perception. However, their combined influence on shaping selectivity to looming motion remains unclear. Driven by recent physiological advancements, this paper offers new insights into the roles of these inhibitory mechanisms at multiple levels and scales in simulations, refining the specific selectivity for responding only to objects approaching the eyes while remaining unresponsive to other forms of movement. Within a feed-forward, multi-layer neural network framework, global inhibition, lateral inhibition, self-inhibition, and feed-forward inhibition are integrated. Global inhibition acts as an immediate feedback mechanism, normalising light intensities delivered by ommatidia, particularly addressing low-contrast looming. Self-inhibition, modelled numerically for the first time, suppresses translational motion. Lateral inhibition is formed by delayed local excitation spreading across a larger area. Notably, self-inhibition and lateral inhibition are sequential in time and are combined through feed-forward inhibition, which indicates the angular size subtended by moving objects. Together, these inhibitory processes attenuate motion-induced excitation at multiple levels and scales. This research suggests that self-inhibition may act earlier than lateral inhibition to rapidly reduce excitation in situ, thereby suppressing translational motion, and global inhibition can modulate excitation on a finer scale, enhancing selectivity in higher contrast range.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员