We construct the first rigorously justified probabilistic algorithm for recovering the solution operator of a hyperbolic partial differential equation (PDE) in two variables from input-output training pairs. The primary challenge of recovering the solution operator of hyperbolic PDEs is the presence of characteristics, along which the associated Green's function is discontinuous. Therefore, a central component of our algorithm is a rank detection scheme that identifies the approximate location of the characteristics. By combining the randomized singular value decomposition with an adaptive hierarchical partition of the domain, we construct an approximant to the solution operator using $O(\Psi_\epsilon^{-1}\epsilon^{-7}\log(\Xi_\epsilon^{-1}\epsilon^{-1}))$ input-output pairs with relative error $O(\Xi_\epsilon^{-1}\epsilon)$ in the operator norm as $\epsilon\to0$, with high probability. Here, $\Psi_\epsilon$ represents the existence of degenerate singular values of the solution operator, and $\Xi_\epsilon$ measures the quality of the training data. Our assumptions on the regularity of the coefficients of the hyperbolic PDE are relatively weak given that hyperbolic PDEs do not have the ``instantaneous smoothing effect'' of elliptic and parabolic PDEs, and our recovery rate improves as the regularity of the coefficients increases.


翻译:暂无翻译

0
下载
关闭预览

相关内容

牛津大学最新《计算代数拓扑》笔记书,107页pdf
专知会员服务
44+阅读 · 2022年2月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
基于LDA的主题模型实践(三)
机器学习深度学习实战原创交流
23+阅读 · 2015年10月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年2月15日
Arxiv
0+阅读 · 2024年2月13日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
基于LDA的主题模型实践(三)
机器学习深度学习实战原创交流
23+阅读 · 2015年10月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员