In real-world applications, it is essential to jointly estimate the 3D object pose and class label of objects, i.e., to perform 3D-aware classification.While current approaches for either image classification or pose estimation can be extended to 3D-aware classification, we observe that they are inherently limited: 1) Their performance is much lower compared to the respective single-task models, and 2) they are not robust in out-of-distribution (OOD) scenarios. Our main contribution is a novel architecture for 3D-aware classification, which builds upon a recent work and performs comparably to single-task models while being highly robust. In our method, an object category is represented as a 3D cuboid mesh composed of feature vectors at each mesh vertex. Using differentiable rendering, we estimate the 3D object pose by minimizing the reconstruction error between the mesh and the feature representation of the target image. Object classification is then performed by comparing the reconstruction losses across object categories. Notably, the neural texture of the mesh is trained in a discriminative manner to enhance the classification performance while also avoiding local optima in the reconstruction loss. Furthermore, we show how our method and feed-forward neural networks can be combined to scale the render-and-compare approach to larger numbers of categories. Our experiments on PASCAL3D+, occluded-PASCAL3D+, and OOD-CV show that our method outperforms all baselines at 3D-aware classification by a wide margin in terms of performance and robustness.


翻译:暂无翻译

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员