We derive a posteriori error estimates for a fully discrete time-implicit finite element approximation of the stochastic total variaton flow (STVF) with additive space time noise. The estimates are first derived for an implementable fully discrete approximation of a regularized stochastic total variation flow. We then show that the derived a posteriori estimates remain valid for the unregularized flow up to a perturbation term that can be controlled by the regularization parameter. Based on the derived a posteriori estimates we propose a pathwise algorithm for the adaptive space-time refinement and perform numerical simulation for the regularized STVF to demonstrate the behavior of the proposed algorithm.


翻译:我们得出一个完全离散的、时间不限的参数近似值,该参数带有添加空间时间噪音;该估计数首先用于一个可执行的、完全离散的、定期的、随机的、总变异流;然后我们表明,从后推估计值对于可受正规化参数控制的到扰动期的不正规流动仍然有效;根据由此得出的一个事后估计值,我们提出一个适应性空间时间改进的路径算法,并对正规化的STVF进行数字模拟,以显示拟议算法的行为。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
112+阅读 · 2020年5月15日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关资讯
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员