The civil engineering industry faces a critical need for innovative non-destructive evaluation methods, particularly for ageing critical infrastructure, such as bridges, where current techniques fall short. Muography, a non-invasive imaging technique, constructs three-dimensional density maps by detecting interactions of naturally occurring cosmic-ray muons within the scanned volume. Cosmic-ray muons provide deep penetration and inherent safety due to their high momenta and natural source. However, the technology's reliance on this source results in constrained muon flux, leading to prolonged acquisition times, noisy reconstructions and image interpretation challenges. To address these limitations, we developed a two-model deep learning approach. First, we employed a conditional Wasserstein generative adversarial network with gradient penalty (cWGAN-GP) to perform predictive upsampling of undersampled muography images. Using the Structural Similarity Index Measure (SSIM), 1-day sampled images matched the perceptual qualities of a 21-day image, while the Peak Signal-to-Noise Ratio (PSNR) indicated noise improvement equivalent to 31 days of sampling. A second cWGAN-GP model, trained for semantic segmentation, quantitatively assessed the upsampling model's impact on concrete sample features. This model achieved segmentation of rebar grids and tendon ducts, with Dice-S{\o}rensen accuracy coefficients of 0.8174 and 0.8663. Notably, it could mitigate or remove z-plane smearing artifacts caused by muography's inverse imaging problem. Both models were trained on a comprehensive Geant4 Monte-Carlo simulation dataset reflecting realistic civil infrastructure scenarios. Our results demonstrate significant improvements in acquisition speed and image quality, marking a substantial step toward making muography more practical for reinforced concrete infrastructure monitoring applications.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
A Survey on Data Augmentation for Text Classification
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员