We study decomposable combinatorial labeled structures in the exp-log class, specifically, two examples of type a=1 and two examples of type a=1/2. Our approach is to establish how well existing theory matches experimental data. For instance, the median length of the longest cycle in a random n-permutation is (0.6065...)*n, whereas the median length of the largest component in a random n-mapping is (0.7864...)*n. Unsolved problems are highlighted, in the hope that someone else might address these someday.
翻译:我们研究Explog类中可分解的分类标签结构, 具体地说, A=1 的两个例子和 a=1/2 的两个例子。 我们的方法是确定现有理论与实验数据的匹配程度。 例如, 随机 n- perpositation 中最长周期的中位长度为 (0. 6065...) * n, 而随机 n- 映射中最大组件的中位长度为 (0. 7864...) * n。 突出突出未解决的问题, 希望有一天别人能解决这些 。