In this paper, we investigate and analyze numerical solutions for the Volterra integrodifferential equations with tempered multi-term kernels. Firstly we derive some regularity estimates of the exact solution. Then a temporal-discrete scheme is established by employing Crank-Nicolson technique and product integration (PI) rule for discretizations of the time derivative and tempered-type fractional integral terms, respectively, from which, nonuniform meshes are applied to overcome the singular behavior of the exact solution at $t=0$. Based on deduced regularity conditions, we prove that the proposed scheme is unconditionally stable, and possesses accurately temporal second-order convergence in $L_2$-norm. Numerical examples confirm the effectiveness of the proposed method.


翻译:在本文中,我们研究并分析了采用渐进多项式核的Volterra积分微分方程的数值解。首先我们推导了准确解的一些正则性估计。然后利用Crank-Nicolson方法和乘积积分(PN)规则,分别对时间导数和温和型分数积分术进行离散化,建立了时间离散方案,其中,采用非均匀网格来克服在 $t=0$ 处的精确解的奇异行为。基于推导出的正则条件,我们证明了所提出的方案是无条件稳定的,并且在 $L_2$ -范数下具有准确的时间二阶收敛性。数值实验验证了所提出方法的有效性。

0
下载
关闭预览

相关内容

专知会员服务
162+阅读 · 2020年1月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
24+阅读 · 2022年2月4日
VIP会员
相关VIP内容
专知会员服务
162+阅读 · 2020年1月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员