Computer-use agents face a fundamental limitation. They rely exclusively on primitive GUI actions (click, type, scroll), creating brittle execution chains prone to cascading failures. While API-driven agents harness rich capabilities through structured interfaces and tools, computer-use agents remain constrained to low-level visual interactions. We present UltraCUA, a foundation model that transcends this limitation through hybrid action-seamlessly unifying primitive GUI operations with high-level tool execution. Our innovation rests on four critical advances. First, an automated pipeline extracts and scales tool capabilities from software documentation and code repositories. Second, a synthetic data engine produces 17,000+ verifiable tasks capturing real-world computer-use complexity. Third, comprehensive hybrid action trajectory collection incorporates both GUI primitives and strategic tool calls. Fourth, a two-stage training methodology combines supervised fine-tuning with online reinforcement learning, enabling intelligent action selection between GUI and API. Evaluation with our 7B and 32B UltraCUA models reveals transformative performance gains. On OSWorld, UltraCUA achieves 22% relative improvement while executing 11% faster than existing approaches, averagely. Cross-domain validation on WindowsAgentArena demonstrates robust generalization with 21.7% success rate, surpassing Windows-trained baselines. The hybrid action paradigm proves essential, reducing error propagation while improving execution efficiency. This work establishes a scalable paradigm bridging primitive GUI interactions and high-level tool intelligence, enabling more resilient and adaptable computer use agents for diverse environments and complex real-world tasks.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员