Multiplicative Programming (MP) pertains to a spectrum of optimization problems that involve product term(s). As computational paradigms of communication systems continue to evolve, particularly concerning the offloading strategies of computationally intensive tasks simultaneously to centralized or decentralized servers, designing or optimizing effective communication systems with MP techniques becomes increasingly indispensable. Similarly, Fractional Programming (FP) is another significant branch in the optimization domain, addressing various essential scenarios in communication. For instance, in minimization optimization problems, transmission power and processing delay of communication systems are considered critical metrics. In a very recent JSAC paper by Zhao et al. [2], an innovative transform (Zhao's Optimization Transform) was proposed for solving the minimization of MP and FP problems. Nevertheless, the resolution of optimization problems in communication systems encounters several limitations when adopting Zhao's optimization transform, especially in MP problems. Primarily, objective functions proposed in these optimization problems typically involve sum-of-products terms and the optimization variables are always discrete leading to NP-hard problems. Furthermore, multiple functions mapping to the non-negative domain in these scenarios can result in auxiliary variables being zero values, while the same situation is avoidable in FP problems due to the presence of these functions in the denominator. In this paper, we introduce an updated transform, building on the foundations of Zhao's original method, designed to effectively overcome these challenges by reformulating the original problem into a series of convex or concave problems. This introduced problem reformulation provides a superior iteration algorithm with demonstrable convergence to a stationary point.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员