Generative retrieval, which has demonstrated effectiveness in text-to-text retrieval, utilizes a sequence-to-sequence model to directly generate candidate identifiers based on natural language queries. Without explicitly computing the similarity between queries and candidates, generative retrieval surpasses dual-tower models in both speed and accuracy on large-scale corpora, providing new insights for cross-modal retrieval. However, constructing identifiers for multimodal data remains an untapped problem, and the modality gap between natural language queries and multimodal candidates hinders retrieval performance due to the absence of additional encoders. To this end, we propose a pioneering generAtive Cross-modal rEtrieval framework (ACE), which is a comprehensive framework for end-to-end cross-modal retrieval based on coarse-to-fine semantic modeling. We propose combining K-Means and RQ-VAE to construct coarse and fine tokens, serving as identifiers for multimodal data. Correspondingly, we design the coarse-to-fine feature fusion strategy to efficiently align natural language queries and candidate identifiers. ACE is the first work to comprehensively demonstrate the feasibility of generative approach on text-to-image/audio/video retrieval, challenging the dominance of the embedding-based dual-tower architecture. Extensive experiments show that ACE achieves state-of-the-art performance in cross-modal retrieval and outperforms the strong baselines on Recall@1 by 15.27% on average.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员