The countermeasure (CM) model is developed to protect ASV systems from spoof attacks and prevent resulting personal information leakage in Automatic Speaker Verification (ASV) system. Based on practicality and security considerations, the CM model is usually deployed on edge devices, which have more limited computing resources and storage space than cloud-based systems, confining the model size under a limitation. To better trade off the CM model sizes and performance, we proposed an adversarial speaker distillation method, which is an improved version of knowledge distillation method combined with generalized end-to-end (GE2E) pre-training and adversarial fine-tuning. In the evaluation phase of the ASVspoof 2021 Logical Access task, our proposed adversarial speaker distillation ResNetSE (ASD-ResNetSE) model reaches 0.2695 min t-DCF and 3.54% EER. ASD-ResNetSE only used 22.5% of parameters and 19.4% of multiply and accumulate operands of ResNetSE model.


翻译:根据实际和安全考虑,CM模型通常部署在边缘装置上,这些装置的计算资源和储存空间比云基系统更有限,限制模型的大小,为了更好地权衡CM模型的大小和性能,我们提议了一种对抗性扬声器蒸馏方法,这是一种改进的知识蒸馏方法,结合一般的终端到终端(GE2E)培训前和对抗性微调。在ASVspooof 2021逻辑存取任务的评价阶段,我们提议的对抗性扬声器蒸馏模型(ASD-ResNetSE)模型达到0.2695 mint-DCF和3.54% EER。ASD-ResNetSE只使用了22.5%的参数和19.4%的ResNetSE模型的增殖和积累操作。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员