An orientable sequence of order $n$ over an alphabet $\{0,1,\ldots, k{-}1\}$ is a cyclic sequence such that each length-$n$ substring appears at most once \emph{in either direction}. When $k= 2$, efficient algorithms are known to construct binary orientable sequences, with asymptotically optimal length, by applying the classic cycle-joining technique. The key to the construction is the definition of a parent rule to construct a cycle-joining tree of asymmetric bracelets. Unfortunately, the parent rule does not generalize to larger alphabets. Furthermore, unlike the binary case, a cycle-joining tree does not immediately lead to a simple successor-rule when $k \geq 3$ unless the tree has certain properties. In this paper, we derive a parent rule to derive a cycle-joining tree of $k$-ary asymmetric bracelets. This leads to a successor rule that constructs asymptotically optimal $k$-ary orientable sequences in $O(n)$ time per symbol using $O(n)$ space. In the special case when $n=2$, we provide a simple construction of $k$-ary orientable sequences of maximal length.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【NeurIPS2019】图变换网络:Graph Transformer Network
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关资讯
【NeurIPS2019】图变换网络:Graph Transformer Network
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员