Higher order finite difference Weighted Essentially Non-Oscillatory (WENO) schemes for conservation laws are extremely popular because, for multidimensional problems, they offer high order accuracy at a fraction of the cost of finite volume WENO or DG schemes. Such schemes come in two formulations. The very popular classical finite difference WENO (FD-WENO) method (Shu and Osher, J. Comput. Phys., 83 (1989) 32-78) relies two reconstruction steps applied to two split fluxes. However, the method cannot accommodate different types of Riemann solvers and cannot preserve free stream boundary conditions on curvilinear meshes. This limits its utility. The alternative finite difference WENO (AFD-WENO) method can overcome these deficiencies, however, much less work has been done on this method. The reasons are three-fold. First, it is difficult for the casual reader to understand the intricate logic that requires higher order derivatives of the fluxes to be evaluated at zone boundaries. The analytical methods for deriving the update equation for AFD-WENO schemes are somewhat recondite. To overcome that difficulty, we provide an easily accessible script that is based on a computer algebra system in Appendix A of this paper. Second, the method relies on interpolation rather than reconstruction, and WENO interpolation formulae have not been documented in the literature as thoroughly as WENO reconstruction formulae. In this paper, we explicitly provide all necessary WENO interpolation formulae that are needed for implementing AFD-WENO up to ninth order. The third reason is that AFD-WENO requires higher order derivatives of the fluxes to be available at zone boundaries. Since those derivatives are usually obtained by finite differencing the zone-centered fluxes, they become susceptible to a Gibbs phenomenon when the solution ...


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
29+阅读 · 2023年2月10日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员