We study community detection in the \emph{symmetric $k$-stochastic block model}, where $n$ nodes are evenly partitioned into $k$ clusters with intra- and inter-cluster connection probabilities $p$ and $q$, respectively. Our main result is a polynomial-time algorithm that achieves the minimax-optimal misclassification rate \begin{equation*} \exp \Bigl(-\bigl(1 \pm o(1)\bigr) \tfrac{C}{k}\Bigr), \quad \text{where } C = (\sqrt{pn} - \sqrt{qn})^2, \end{equation*} whenever $C \ge K\,k^2\,\log k$ for some universal constant $K$, matching the Kesten--Stigum (KS) threshold up to a $\log k$ factor. Notably, this rate holds even when an adversary corrupts an $η\le \exp\bigl(- (1 \pm o(1)) \tfrac{C}{k}\bigr)$ fraction of the nodes. To the best of our knowledge, the minimax rate was previously only attainable either via computationally inefficient procedures [ZZ15] or via polynomial-time algorithms that require strictly stronger assumptions such as $C \ge K k^3$ [GMZZ17]. In the node-robust setting, the best known algorithm requires the substantially stronger condition $C \ge K k^{102}$ [LM22]. Our results close this gap by providing the first polynomial-time algorithm that achieves the minimax rate near the KS threshold in both settings. Our work has two key technical contributions: (1) we robustify majority voting via the Sum-of-Squares framework, (2) we develop a novel graph bisection algorithm via robust majority voting, which allows us to significantly improve the misclassification rate to $1/\mathrm{poly}(k)$ for the initial estimation near the KS threshold.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员