Modelling dynamical systems is an integral component for understanding the natural world. To this end, neural networks are becoming an increasingly popular candidate owing to their ability to learn complex functions from large amounts of data. Despite this recent progress, there has not been an adequate discussion on the architectural regularization that neural networks offer when learning such systems, hindering their efficient usage. In this paper, we initiate a discussion in this direction using coordinate networks as a test bed. We interpret dynamical systems and coordinate networks from a signal processing lens, and show that simple coordinate networks with few layers can be used to solve multiple problems in modelling dynamical systems, without any explicit regularizers.


翻译:模拟动态系统是了解自然界的一个组成部分。 为此,神经网络由于能够从大量数据中学习复杂功能,正日益成为受欢迎的候选人。尽管最近取得了这一进展,但还没有就神经网络在学习这些系统时提供的建筑规范进行充分讨论,从而阻碍了这些系统的有效使用。在本文中,我们利用协调网络作为测试台,以此为方向展开讨论。我们从信号处理镜头中解释动态系统和协调网络,并表明可以使用几层的简单协调网络来解决模拟动态系统中的多种问题,而没有明确的规范。</s>

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
15+阅读 · 2020年12月17日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员