Proactive failure detection of instances is vitally essential to microservice systems because an instance failure can propagate to the whole system and degrade the system's performance. Over the years, many single-modal (i.e., metrics, logs, or traces) data-based nomaly detection methods have been proposed. However, they tend to miss a large number of failures and generate numerous false alarms because they ignore the correlation of multimodal data. In this work, we propose AnoFusion, an unsupervised failure detection approach, to proactively detect instance failures through multimodal data for microservice systems. It applies a Graph Transformer Network (GTN) to learn the correlation of the heterogeneous multimodal data and integrates a Graph Attention Network (GAT) with Gated Recurrent Unit (GRU) to address the challenges introduced by dynamically changing multimodal data. We evaluate the performance of AnoFusion through two datasets, demonstrating that it achieves the F1-score of 0.857 and 0.922, respectively, outperforming the state-of-the-art failure detection approaches.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
11+阅读 · 2022年3月16日
Arxiv
12+阅读 · 2021年6月21日
Arxiv
13+阅读 · 2021年3月3日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关论文
Arxiv
11+阅读 · 2022年3月16日
Arxiv
12+阅读 · 2021年6月21日
Arxiv
13+阅读 · 2021年3月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员