In this paper, we develop data-driven closure/correction terms to increase the pressure and velocity accuracy of reduced order models (ROMs) for fluid flows. Specifically, we propose the first pressure-based data-driven variational multiscale ROM, in which we use the available data to construct closure/correction terms for both the momentum equation and the continuity equation. Our numerical investigation of the two-dimensional flow past a circular cylinder at Re=50000 in the marginally-resolved regime shows that the novel pressure data-driven variational multiscale ROM yields significantly more accurate velocity and pressure approximations than the standard ROM and, more importantly, than the original data-driven variational multiscale ROM (i.e., without pressure components). In particular, our numerical results show that adding the closure/correction term in the momentum equation significantly improves both the velocity and the pressure approximations, whereas adding the closure/correction term in the continuity equation improves only the pressure approximation.


翻译:在本文中,我们开发了数据驱动的封闭/校正术语,以提高流体减序模型(ROMs)的压力和速度精确度。具体地说,我们提出了第一个基于压力的数据驱动多比例变式模型(ROMs),其中我们使用可用数据构建动力方程式和连续性方程式的封闭/校正术语。我们对微溶解系统中以Re=50000为值的双维圆柱体流进行的数字调查表明,新的压力数据驱动的多尺度变式ROM比标准ROM的更精确的速度和压力近似值,更重要的是,比原数据驱动的多比例变式ROM(即没有压力组件)要高得多。特别是,我们的数字结果显示,在动力方程式中添加封闭/校正术语,大大改进了速度和压力近似值,而在连续性方程式中添加关闭/校正术语只改进了压力逼近值。

0
下载
关闭预览

相关内容

【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
Top
微信扫码咨询专知VIP会员