Online controlled experiments have emerged as industry gold standard for assessing new web features. As new web algorithms proliferate, experimentation platform faces an increasing demand on the velocity of online experiments, which encourages adaptive traffic testing methods to speed up identifying best variant by efficiently allocating traffic. This paper proposed four Bayesian batch bandit algorithms (NB-TS, WB-TS, NB-TTTS, WB-TTTS) for eBay's experimentation platform, using summary batch statistics of a goal metric without incurring new engineering technical debts. The novel WB-TTTS, in particular, demonstrates as an efficient, trustworthy and robust alternative to fixed horizon A/B testing. Another novel contribution is to bring trustworthiness of best arm identification algorithms into evaluation criterion and highlight the existence of severe false positive inflation with equivalent best arms. To gain the trust of experimenters, experimentation platform must consider both efficiency and trustworthiness; However, to the best of authors' knowledge, trustworthiness as an important topic is rarely discussed. This paper shows that Bayesian bandits without neutral posterior reshaping, particularly naive Thompson sampling (NB-TS), are untrustworthy because they can always identify an arm as the best from equivalent best arms. To restore trustworthiness, a novel finding uncovers connections between convergence distribution of posterior optimal probabilities of equivalent best arms and neutral posterior reshaping, which controls false positives. Lastly, this paper presents lessons learned from eBay's experience, as well as thorough evaluations. We hope this work is useful to other industrial practitioners and inspires academic researchers interested in the trustworthiness of adaptive traffic experimentation.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员