Peskin's Immersed Boundary (IB) model and method are among one of the most important modeling tools and numerical methods. The IB method has been known to be first order accurate in the velocity. However, almost no rigorous theoretical proof can be found in the literature for Stokes equations with a prescribed velocity boundary condition. In this paper, it has been shown that the pressure of the Stokes equation has a convergence order $O(\sqrt{h} |\log h| )$ in the $L^2$ norm while the velocity has an $O(h |\log h| )$ convergence order in the infinity norm in two-space dimensions. The proofs are based on splitting the singular source terms, discrete Green functions on finite lattices with homogeneous and Neumann boundary conditions, a new discovered simplest $L^2$ discrete delta function, and the convergence proof of the IB method for elliptic interface problems \cite{li:mathcom}. The conclusion in this paper can apply to problems with different boundary conditions as long as the problems are wellposed. The proof process also provides an efficient way to decouple the system into three Helmholtz/Poisson equations without affecting the order of convergence. A non-trivial numerical example is also provided to confirm the theoretical analysis and the simple new discrete delta function.


翻译:Peskin 的 Immersed 边界模型和方法是最重要的模型工具之一和数字方法之一。 IB 方法在速度上已知是第一顺序精确的。 但是, 在文献中, 几乎找不到严格的理论证据 。 在有指定速度边界条件的 Stokes 方程式的文献中, 在指定速度边界条件的 Stokes 方程式中, 几乎找不到严格的理论证据 。 在本文中, 已经显示 Stokes 方程式的压力在 $L% 2 标准中是 $O (\\ log h ) 的趋同顺序, 而速度在两个空格度标准中, 直径标准是 $O (h \ log h ) $($) $($) $($) $($) $($) $($) $( $) $( $( $) ( $) $( $) $( $) $( g) ) $( g) $( ) $( g) $( $) $( $) $( g) $( $) $) $( $( $) $) $( $( $) $( $) $) $( $) $) $( $) $( $) $( $) $( $) $( $) $( $) $( $) $( $) $( $) $) ) ) ) ) ) ( $( $( $( $( $( $) $( $) $) $) $) ) ) ) ) $( ) ) $( $( $) ) ) ) ) $( $( $( ) ) $( $( $) $) ) $( ) ) ) ) $( $( ) $( ) ) $( $( ) $( ) )

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
Top
微信扫码咨询专知VIP会员