Chaotic systems play a key role in modern image encryption due to their sensitivity to initial conditions, ergodicity, and complex dynamics. However, many existing chaos-based encryption methods suffer from vulnerabilities, such as inadequate permutation and diffusion, and suboptimal pseudorandom properties. This paper presents Kun-IE, a novel encryption framework designed to address these issues. The framework features two key contributions: the development of the 2D Sin-Cos Pi Hyperchaotic Map (2D-SCPHM), which offers a broader chaotic range and superior pseudorandom sequence generation, and the introduction of Kun-SCAN, a novel permutation strategy that significantly reduces pixel correlations, enhancing resistance to statistical attacks. Kun-IE is flexible and supports encryption for images of any size. Experimental results and security analyses demonstrate its robustness against various cryptanalytic attacks, making it a strong solution for secure image communication. The code is available at this \href{https://github.com/QuincyQAQ/Elevating-Medical-Image-Security-A-Cryptographic-Framework-Integrating-Hyperchaotic-Map-and-GRU}{link}.
翻译:暂无翻译