There is an immediate need for creative ways to improve resource ef iciency given the dynamic nature of robust sensor networks and their increasing reliance on data-driven approaches.One key challenge faced is ef iciently managing large data files collected from sensor networks for example optimal beehive image and video data files. We of er a revolutionary paradigm that uses cutting-edge edge computing techniques to optimize data transmission and storage in order to meet this problem. Our approach encompasses data compression for images and videos, coupled with a data aggregation technique for numerical data. Specifically, we propose a novel compression algorithm that performs better than the traditional Bzip2, in terms of data compression ratio and throughput. We also designed as an addition a data aggregation algorithm that basically performs very well by reducing on the time to process the overhead of individual data packets there by reducing on the network traf ic. A key aspect of our approach is its ability to operate in resource-constrained environments, such as that typically found in a local beehive farm application from where we obtained various datasets. To achieve this, we carefully explore key parameters such as throughput, delay tolerance, compression rate, and data retransmission. This ensures that our approach can meet the unique requirements of robust network management while minimizing the impact on resources. Overall, our study presents and majorly focuses on a holistic solution for optimizing data transmission and processing across robust sensor networks for specifically local beehive image and video data files. Our approach has the potential to significantly improve the ef iciency and ef ectiveness of robust sensor network management, thereby supporting sustainable practices in various IoT applications such as in Bee Hive Data Management.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
详述DeepMind wavenet原理及其TensorFlow实现
深度学习每日摘要
12+阅读 · 2017年6月26日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
详述DeepMind wavenet原理及其TensorFlow实现
深度学习每日摘要
12+阅读 · 2017年6月26日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员