Edge computing environments host increasingly complex microservice-based IoT applications, which are prone to performance anomalies that can propagate across dependent services. Identifying the true source of such anomalies, known as Root Cause Localization (RCL), is essential for timely mitigation. However, existing RCL approaches are designed for cloud environments and rely on centralized analysis, which increases latency and communication overhead when applied at the edge. This paper proposes a decentralized RCL approach that executes localization directly at the edge device level using the Personalized PageRank (PPR) algorithm. The proposed method first groups microservices into communication- and colocation-aware clusters, thereby confining most anomaly propagation within cluster boundaries. Within each cluster, PPR is executed locally to identify the root cause, significantly reducing localization time. For the rare cases where anomalies propagate across clusters, we introduce an inter-cluster peer-to-peer approximation process, enabling lightweight coordination among clusters with minimal communication overhead. To enhance the accuracy of localization in heterogeneous edge environments, we also propose a novel anomaly scoring mechanism tailored to the diverse anomaly triggers that arise across microservice, device, and network layers. Evaluation results on the publicly available edge dataset, MicroCERCL, demonstrate that the proposed decentralized approach achieves comparable or higher localization accuracy than its centralized counterpart while reducing localization time by up to 34%. These findings highlight that decentralized graph-based RCL can provide a practical and efficient solution for anomaly diagnosis in resource-constrained edge environments.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员