We present a revisit of the seeds algorithm to explore the semigroup tree. First, an equivalent definition of seed is presented, which seems easier to manage. Second, we determine the seeds of semigroups with at most three left elements. And third, we find the great-grandchildren of any numerical semigroup in terms of its seeds. The RGD algorithm is the fastest known algorithm at the moment. But if one compares the originary seeds algorithm with the RGD algorithm, one observes that the seeds algorithm uses more elaborated mathematical tools while the RGD algorithm uses data structures that are better adapted to the final C implementations. For genera up to around one half of the maximum size of native integers, the newly defined seeds algorithm performs significantly better than the RGD algorithm. For future compilators allowing larger native sized integers this may constitute a powerful tool to explore the semigroup tree up to genera never explored before. The new seeds algorithm uses bitwise integer operations, the knowledge of the seeds of semigroups with at most three left elements and of the great-grandchildren of any numerical semigroup, apart from techniques such as parallelization and depth first search as wisely introduced in this context by Fromentin and Hivert. The algorithm has been used to prove that there are no Eliahou semigroups of genus $66$, hence proving the Wilf conjecture for genus up to $66$. We also found three Eliahou semigroups of genus $67$. One of these semigroups is neither of Eliahou-Fromentin type, nor of Delgado's type. However, it is a member of a new family suggested by Shalom Eliahou.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年8月16日
Arxiv
0+阅读 · 2023年8月16日
Arxiv
0+阅读 · 2023年8月14日
VIP会员
相关VIP内容
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员