Consider a mechanism that cannot observe how many players there are directly, but instead must rely on their self-reports to know how many are participating. Suppose the players can create new identities to report to the auctioneer at some cost $c$. The usual mechanism design paradigm is equivalent to implicitly assuming that $c$ is infinity for all players, while the usual Sybil attacks literature is that it is zero or finite for one player (the attacker) and infinity for everyone else (the 'honest' players). The false-name proof literature largely assumes the cost to be 0. We consider a model with variable costs that unifies these disparate streams. A paradigmatic normal form game can be extended into a Sybil game by having the action space by the product of the feasible set of identities to create action where each player chooses how many players to present as in the game and their actions in the original normal form game. A mechanism is (dominant) false-name proof if it is (dominant) incentive-compatible for all the players to self-report as at most one identity. We study mechanisms proposed in the literature motivated by settings where anonymity and self-identification are the norms, and show conditions under which they are not Sybil-proof. We characterize a class of dominant Sybil-proof mechanisms for reward sharing and show that they achieve the efficiency upper bound. We consider the extension when agents can credibly commit to the strategy of their sybils and show how this can break mechanisms that would otherwise be false-name proof.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年8月17日
Arxiv
45+阅读 · 2022年9月19日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员