Tang and Ding \cite{X. Tang} present a series of quaternary sequences $w(a, b)$ interleaved by two binary sequences $a$ and $b$ with ideal autocorrelation and show that such interleaved quaternary sequences have optimal autocorrelation. In this paper we consider the 4-adic complexity $FC_{w}(4)$ of such quaternary sequence $w=w(a, b)$. We present a general formula on $FC_{w}(4)$, $w=w(a, b)$. As a direct consequence, we obtain a general lower bound $FC_{w}(4)\geq\log_{4}(4^{n}-1)$ where $2n$ is the period of the sequence $w$. By taking $a$ and $b$ to be several types of known binary sequences with ideal autocorrelation ($m$-sequences, twin-prime, Legendre, Hall sequences and their complement, shift or sample sequences), we compute the exact values of $FC_{w}(4)$, $w=w(a, b)$ and show that in most cases $FC_{w}(4)$ reaches or nearly reaches the maximum value $\log_{4}(4^{2n}-1)$. Our results show that the 4-adic complexity of the quaternary sequences defined in \cite{X. Tang} are large enough to resist the attack of the rational approximation algorithm.


翻译:唐氏和Ding & Cite{X. 唐} 提供了一系列四进制序列 $w(a, b) 美元, 美元=w(a) 美元, b) 美元。 作为直接后果, 我们得到了一个普通的低两进制序列 $FC{w} 美元, 美元与美元, 美元是理想的四进制序列 $FC{w} (4) 美元, 美元是理想的四进制序列 $-a =w(a, b) 美元。 我们得到了一个普通的低两进制序列, 美元与理想的二进制序列 $(a) 美元, 美元, 美元 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元。

0
下载
关闭预览

相关内容

专知会员服务
78+阅读 · 2021年3月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年11月20日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员