In this paper, we use the class of Wasserstein metrics to study asymptotic properties of posterior distributions. Our first goal is to provide sufficient conditions for posterior consistency. In addition to the well-known Schwartz's Kullback--Leibler condition on the prior, the true distribution and most probability measures in the support of the prior are required to possess moments up to an order which is determined by the order of the Wasserstein metric. We further investigate convergence rates of the posterior distributions for which we need stronger moment conditions. The required tail conditions are sharp in the sense that the posterior distribution may be inconsistent or contract slowly to the true distribution without these conditions. Our study involves techniques that build on recent advances on Wasserstein convergence of empirical measures. We apply the results to density estimation with a Dirichlet process mixture prior and conduct a simulation study for further illustration.


翻译:在本文中,我们使用瓦塞尔斯坦标准来研究后天分配的无症状特性。 我们的第一个目标是为后天分配提供足够的条件。 除了众所周知的施瓦兹对前的库尔贝克-利贝尔条件之外,支持前天分配的真正分布和最可能的措施必须具备达到由瓦塞斯坦标准顺序决定的顺序所需的时间。 我们进一步调查后天分配的趋同率,我们需要更强大的时刻条件。 所需的尾矿条件是尖锐的,因为后天分配可能前后不一致,或者在不按这些条件进行真正分配方面缓慢地合同。 我们的研究涉及在瓦塞斯坦最近经验性措施趋同方面的进展基础上发展的技术。 我们用结果来进行密度估计,先用迪里赫特工艺混合,然后进行模拟研究,以便进一步说明。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2018年3月12日
VIP会员
相关VIP内容
专知会员服务
42+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员