In automata theory, while determinisation provides a standard route to solving many common problems in automata theory, some weak forms of nondeterminism can be dealt with in some problems without costly determinisation. For example, the handling of specifications given by nondeterministic automata over infinite words for the problems of reactive synthesis or runtime verification requires resolving nondeterministic choices without knowing the future of the input word. We define and study classes of $\omega$-regular automata for which the nondeterminism can be resolved by a policy that uses a combination of memory and randomness on any input word, based solely on the prefix read so far. We examine two settings for providing the input word to an automaton. In the first setting, called adversarial resolvability, the input word is constructed letter-by-letter by an adversary, dependent on the resolver's previous decisions. In the second setting, called stochastic resolvability, the adversary pre-commits to an infinite word and reveals it letter-by-letter. In each setting, we require the existence of an almost-sure resolver, i.e., a policy that ensures that as long as the adversary provides a word in the language of the underlying nondeterministic automaton, the run constructed by the policy is accepting with probability 1. The class of automata that are adversarially resolvable is the well-studied class of history-deterministic automata. The case of stochastically resolvable automata, on the other hand, defines a novel class. Restricting the class of resolvers in both settings to stochastic policies without memory introduces two additional new classes of automata. We show that the new automaton classes offer interesting trade-offs between succinctness, expressivity, and computational complexity, providing a fine gradation between deterministic automata and nondeterministic automata.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 3月29日
Arxiv
0+阅读 · 3月28日
Arxiv
15+阅读 · 2021年6月27日
Reasoning on Knowledge Graphs with Debate Dynamics
Arxiv
14+阅读 · 2020年1月2日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 3月29日
Arxiv
0+阅读 · 3月28日
Arxiv
15+阅读 · 2021年6月27日
Reasoning on Knowledge Graphs with Debate Dynamics
Arxiv
14+阅读 · 2020年1月2日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员