Economically responsible mitigation of multivariate extreme risks -- extreme rainfall in a large area, huge variations of many stock prices, widespread breakdowns in transportation systems -- requires estimates of the probabilities that such risks will materialize in the future. This paper develops a new method, Wasserstein--Aitchison Generative Adversarial Networks (WA-GAN) to, which provides simulated values of $d$-dimensional multivariate extreme events and which can hence be used to give estimates of such probabilities. The main hypothesis is that, after transforming the observations to the unit-Pareto scale, their distribution is regularly varying in the sense that the distributions of their radial and angular components (with respect to the $L_1$-norm) converge and become asymptotically independent as the radius gets large. The method is a combination of standard extreme value analysis modeling of the tails of the marginal distributions with nonparametric GAN modeling of the angular distribution. For the latter, the angular values are transformed to Aitchison coordinates in a full $(d-1)$-dimensional linear space, and a Wasserstein GAN is trained on these coordinates and used to generate new values. A reverse transformation is then applied to these values and gives simulated values on the original data scale. Our method is applied to simulated data and to a financial data set from the Kenneth French Data Library. The method shows good performance compared to other existing methods in the literature, both in terms of capturing the dependence structure of the extremes in the data and in generating accurate new extremes.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 11月26日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员