Let $f \colon \mathcal{M} \to \mathbb{R}$ be a Lipschitz and geodesically convex function defined on a $d$-dimensional Riemannian manifold $\mathcal{M}$. Does there exist a first-order deterministic algorithm which (a) uses at most $O(\mathrm{poly}(d) \log(\epsilon^{-1}))$ subgradient queries to find a point with target accuracy $\epsilon$, and (b) requires only $O(\mathrm{poly}(d))$ arithmetic operations per query? In convex optimization, the classical ellipsoid method achieves this. After detailing related work, we provide an ellipsoid-like algorithm with query complexity $O(d^2 \log^2(\epsilon^{-1}))$ and per-query complexity $O(d^2)$ for the limited case where $\mathcal{M}$ has constant curvature (hemisphere or hyperbolic space). We then detail possible approaches and corresponding obstacles for designing an ellipsoid-like method for general Riemannian manifolds.


翻译:暂无翻译

0
下载
关闭预览

相关内容

最优化是应用数学的一个分支,主要指在一定条件限制下,选取某种研究方案使目标达到最优的一种方法。最优化问题在当今的军事、工程、管理等领域有着极其广泛的应用。
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年9月14日
Arxiv
0+阅读 · 2023年9月12日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员