Generation of long-form, citation-backed reports is a primary use case for retrieval augmented generation (RAG) systems. While open-source evaluation tools exist for various RAG tasks, ones tailored to report generation are lacking. Accordingly, we introduce Auto-ARGUE, a robust LLM-based implementation of the recent ARGUE framework for report generation evaluation. We present analysis of Auto-ARGUE on the report generation pilot task from the TREC 2024 NeuCLIR track, showing good system-level correlations with human judgments. We further release a web app for visualization of Auto-ARGUE outputs.
翻译:暂无翻译