One of the major open problems in complexity theory is proving super-logarithmic lower bounds on the depth of circuits (i.e., $\mathbf{P}\not\subseteq\mathbf{NC}^{1}$). Karchmer, Raz, and Wigderson (Computational Complexity 5(3/4), 1995) suggested to approach this problem by proving that depth complexity of a composition of functions $f\diamond g$ is roughly the sum of the depth complexities of $f$ and $g$. They showed that the validity of this conjecture would imply that $\mathbf{P}\not\subseteq\mathbf{NC}^{1}$. The intuition that underlies the KRW conjecture is that the composition $f\diamond g$ should behave like a "direct-sum problem", in a certain sense, and therefore the depth complexity of $f\diamond g$ should be the sum of the individual depth complexities. Nevertheless, there are two obstacles toward turning this intuition into a proof: first, we do not know how to prove that $f\diamond g$ must behave like a direct-sum problem; second, we do not know how to prove that the complexity of the latter direct-sum problem is indeed the sum of the individual complexities. In this work, we focus on the second obstacle. To this end, we study a notion called "strong composition", which is the same as $f\diamond g$ except that it is forced to behave like a direct-sum problem. We prove a variant of the KRW conjecture for strong composition, thus overcoming the above second obstacle. This result demonstrates that the first obstacle above is the crucial barrier toward resolving the KRW conjecture. Along the way, we develop some general techniques that might be of independent interest.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员