We focus on a generalization of the classic Minisum approval voting rule, introduced by Barrot and Lang (2016), and referred to as Conditional Minisum (CMS), for multi-issue elections with preferential dependencies. Under this rule, voters are allowed to declare dependencies between different issues, but the price we have to pay for this higher level of expressiveness is that we end up with a computationally hard rule. Motivated by this, we first focus on finding special cases that admit efficient algorithms for CMS. Our main result in this direction is that we identify the condition of bounded treewidth (of an appropriate graph, emerging from the provided ballots) as the necessary and sufficient condition for exact polynomial algorithms, under common complexity assumptions. We then move to the design of approximation algorithms. For the (still hard) case of binary issues, we identify natural restrictions on the voters' ballots, under which we provide the first multiplicative approximation algorithms for the problem. The restrictions involve upper bounds on the number of dependencies an issue can have on the others and on the number of alternatives per issue that a voter can approve. Finally, we also investigate the complexity of problems related to the strategic control of conditional approval elections by adding or deleting either voters or alternatives and we show that in most variants of these problems, CMS is computationally resistant against control. Overall, we conclude that CMS can be viewed as a solution that achieves a satisfactory tradeoff between expressiveness and computational efficiency, when we have a limited number of dependencies among issues, while at the same time exhibiting sufficient resistance to control.


翻译:暂无翻译

0
下载
关闭预览

相关内容

CMS:内容管理系统
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员