In previous work, we deployed IssueTAG, which uses the texts present in the one-line summary and the description fields of the issue reports to automatically assign them to the stakeholders, who are responsible for resolving the reported issues. Since its deployment on January 12, 2018 at Softtech, i.e., the software subsidiary of the largest private bank in Turkey, IssueTAG has made a total of 301,752 assignments (as of November 2021). One observation we make is that a large fraction of the issue reports submitted to Softtech has screenshot attachments and, in the presence of such attachments, the reports often convey less information in their one-line summary and the description fields, which tends to reduce the assignment accuracy. In this work, we use the screenshot attachments as an additional source of information to further improve the assignment accuracy, which (to the best of our knowledge) has not been studied before in this context. In particular, we develop a number of multi-source (using both the issue reports and the screenshot attachments) and single-source assignment models (using either the issue reports or the screenshot attachments) and empirically evaluate them on real issue reports. In the experiments, compared to the currently deployed single-source model in the field, the best multi-source model developed in this work, significantly (both in the practical and statistical sense) improved the assignment accuracy for the issue reports with screenshot attachments from 0.843 to 0.858 at acceptable overhead costs, a result strongly supporting our basic hypothesis.


翻译:暂无翻译

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
专知会员服务
19+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
专知会员服务
19+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员