In this paper, we provide a theoretical analysis for a preconditioned steepest descent (PSD) iterative solver that improves the computational time of a finite difference numerical scheme for the Cahn-Hilliard equation with Flory-Huggins energy potential. In the numerical design, a convex splitting approach is applied to the chemical potential such that the logarithmic and the surface diffusion terms are treated implicitly while the expansive concave term is treated with an explicit update. The nonlinear and singular nature of the logarithmic energy potential makes the numerical implementation very challenging. However, the positivity-preserving property for the logarithmic arguments, unconditional energy stability, and optimal rate error estimates have been established in a recent work and it has been shown that successful solvers ensure a similar positivity-preserving property at each iteration stage. Therefore, in this work, we will show that the PSD solver ensures a positivity-preserving property at each iteration stage. The PSD solver consists of first computing a search direction (involved with solving a Poisson-like equation) and then takes a one-parameter optimization step over the search direction in which the Newton iteration becomes very powerful. A theoretical analysis is applied to the PSD iteration solver and a geometric convergence rate is proved for the iteration. In particular, the strict separation property of the numerical solution, which indicates a uniform distance between the numerical solution and the singular limit values of $\pm 1$ for the phase variable, plays an essential role in the iteration convergence analysis. A few numerical results are presented to demonstrate the robustness and efficiency of the PSD solver.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员