This note addresses issues raised by Cox and Reid in their seminal paper in 1987 regarding parameter orthogonality in statistical inference. We extend the orthogonality condition to cases with multiple parameters of interest and demonstrate its existence at a global level for some generally important distributions, despite previously expressed pessimism by them. Numerical results with the location-scale $t$-distribution reveal substantial gains in estimation accuracy and savings in computation time, thanks to the existence. We next show that the local parameter orthogonality can lead to efficient computational algorithms with the celebrated Whittle algorithm for multivariate autoregressive modeling as a showcase.


翻译:本文针对Cox和Reid于1987年在其开创性论文中提出的统计推断中参数正交性问题进行了探讨。我们将正交性条件扩展至含多个感兴趣参数的情形,并证明在某些普遍重要的分布中,正交性在全局层面存在,尽管他们先前对此表达了悲观看法。以位置-尺度$t$分布为例的数值结果表明,由于正交性的存在,估计精度显著提升,计算时间大幅节省。进一步,我们证明局部参数正交性可催生高效的计算算法,并以多元自回归建模中著名的Whittle算法为例进行展示。

0
下载
关闭预览

相关内容

NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
25+阅读 · 2021年7月31日
自动结构变分推理,Automatic structured variational inference
专知会员服务
41+阅读 · 2020年2月10日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关VIP内容
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
25+阅读 · 2021年7月31日
自动结构变分推理,Automatic structured variational inference
专知会员服务
41+阅读 · 2020年2月10日
相关资讯
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员