The dichromatic number $\vec{\chi}(D)$ of a digraph $D$ is the minimum number of colours needed to colour the vertices of a digraph such that each colour class induces an acyclic subdigraph. A digraph $D$ is $k$-dicritical if $\vec{\chi}(D) = k$ and each proper subdigraph $H$ of $D$ satisfies $\vec{\chi}(H) < k$. For integers $k$ and $n$, we define $d_k(n)$ (respectively $o_k(n)$) as the minimum number of arcs possible in a $k$-dicritical digraph (respectively oriented graph). Kostochka and Stiebitz have shown that $d_4(n) \geq \frac{10}{3}n -\frac{4}{3}$. They also conjectured that there is a constant $c$ such that $o_k(n) \geq cd_k(n)$ for $k\geq 3$ and $n$ large enough. This conjecture is known to be true for $k=3$ (Aboulker et al.). In this work, we prove that every $4$-dicritical oriented graph on $n$ vertices has at least $(\frac{10}{3}+\frac{1}{51})n-1$ arcs, showing the conjecture for $k=4$. We also characterise exactly the $k$-dicritical digraphs on $n$ vertices with exactly $\frac{10}{3}n -\frac{4}{3}$ arcs.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年8月8日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员