This paper explores the distribution of indistinguishable balls into distinct urns with varying capacity constraints, a foundational issue in combinatorial mathematics with applications across various disciplines. We present a comprehensive theoretical framework that addresses both upper and lower capacity constraints under different distribution conditions, elaborating on the combinatorial implications of such variations. Through rigorous analysis, we derive analytical solutions that cater to different constrained environments, providing a robust theoretical basis for future empirical and theoretical investigations. These solutions are pivotal for advancing research in fields that rely on precise distribution strategies, such as physics and parallel processing. The paper not only generalizes classical distribution problems but also introduces novel methodologies for tackling capacity variations, thereby broadening the utility and applicability of distribution theory in practical and theoretical contexts.
翻译:暂无翻译