Cyber-physical system sensors emit multivariate time series (MTS) that monitor physical system processes. Such time series generally capture unknown numbers of states, each with a different duration, that correspond to specific conditions, e.g., "walking" or "running" in human-activity monitoring. Unsupervised identification of such states facilitates storage and processing in subsequent data analyses, as well as enhances result interpretability. Existing state-detection proposals face three challenges. First, they introduce substantial computational overhead, rendering them impractical in resourceconstrained or streaming settings. Second, although state-of-the-art (SOTA) proposals employ contrastive learning for representation, insufficient attention to false negatives hampers model convergence and accuracy. Third, SOTA proposals predominantly only emphasize offline non-streaming deployment, we highlight an urgent need to optimize online streaming scenarios. We propose E2Usd that enables efficient-yet-accurate unsupervised MTS state detection. E2Usd exploits a Fast Fourier Transform-based Time Series Compressor (fftCompress) and a Decomposed Dual-view Embedding Module (ddEM) that together encode input MTSs at low computational overhead. Additionally, we propose a False Negative Cancellation Contrastive Learning method (fnccLearning) to counteract the effects of false negatives and to achieve more cluster-friendly embedding spaces. To reduce computational overhead further in streaming settings, we introduce Adaptive Threshold Detection (adaTD). Comprehensive experiments with six baselines and six datasets offer evidence that E2Usd is capable of SOTA accuracy at significantly reduced computational overhead.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员