We study the expressive power of first-order logic with counting quantifiers, especially the $k$-variable and quantifier-rank-$q$ fragment $\mathsf{C}^k_q$, using homomorphism indistinguishability. Recently, Dawar, Jakl, and Reggio (2021) proved that two graphs satisfy the same $\mathsf{C}^k_q$-sentences if and only if they are homomorphism indistinguishable over the class $\mathcal{T}^k_q$ of graphs admitting a $k$-pebble forest cover of depth $q$. Their proof builds on the categorical framework of game comonads developed by Abramsky, Dawar, and Wang (2017). We reprove their result using elementary techniques inspired by Dvo\v{r}\'ak (2010). Using these techniques we also give a characterisation of guarded counting logic. Our main focus, however, is to provide a graph theoretic analysis of the graph class $\mathcal{T}^k_q$. This allows us to separate $\mathcal{T}^k_q$ from the intersection of the graph class $\mathcal{TW}_{k-1}$, that is graphs of treewidth less or equal $k-1$, and $\mathcal{TD}_q$, that is graphs of treedepth at most $q$ if $q$ is sufficiently larger than $k$. We are able to lift this separation to the semantic separation of the respective homomorphism indistinguishability relations. A part of this separation is to prove that the class $\mathcal{TD}_q$ is homomorphism distinguishing closed, which was already conjectured by Roberson (2022).


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员