Large language models (LLMs) are transforming the landscape of chemistry and materials science. Recent examples of LLM-accelerated experimental research include virtual assistants for parsing synthesis recipes from the literature, or using the extracted knowledge to guide synthesis and characterization. Despite these advancements, their application is constrained to labs with automated instruments and control software, leaving much of materials science reliant on manual processes. Here, we demonstrate the rapid deployment of a Python-based control module for a Keithley 2400 electrical source measure unit using ChatGPT-4. Through iterative refinement, we achieved effective instrument management with minimal human intervention. Additionally, a user-friendly graphical user interface (GUI) was created, effectively linking all instrument controls to interactive screen elements. Finally, we integrated this AI-crafted instrument control software with a high-performance stochastic optimization algorithm to facilitate rapid and automated extraction of electronic device parameters related to semiconductor charge transport mechanisms from current-voltage (IV) measurement data. This integration resulted in a comprehensive open-source toolkit for semiconductor device characterization and analysis using IV curve measurements. We demonstrate the application of these tools by acquiring, analyzing, and parameterizing IV data from a Pt/Cr$_2$O$_3$:Mg/$\beta$-Ga$_2$O$_3$ heterojunction diode, a novel stack for high-power and high-temperature electronic devices. This approach underscores the powerful synergy between LLMs and the development of instruments for scientific inquiry, showcasing a path for further acceleration in materials science.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员