Randomness supports many critical functions in the field of machine learning (ML) including optimisation, data selection, privacy, and security. ML systems outsource the task of generating or harvesting randomness to the compiler, the cloud service provider or elsewhere in the toolchain. Yet there is a long history of attackers exploiting poor randomness, or even creating it -- as when the NSA put backdoors in random number generators to break cryptography. In this paper we consider whether attackers can compromise an ML system using only the randomness on which they commonly rely. We focus our effort on Randomised Smoothing, a popular approach to train certifiably robust models, and to certify specific input datapoints of an arbitrary model. We choose Randomised Smoothing since it is used for both security and safety -- to counteract adversarial examples and quantify uncertainty respectively. Under the hood, it relies on sampling Gaussian noise to explore the volume around a data point to certify that a model is not vulnerable to adversarial examples. We demonstrate an entirely novel attack against it, where an attacker backdoors the supplied randomness to falsely certify either an overestimate or an underestimate of robustness. We demonstrate that such attacks are possible, that they require very small changes to randomness to succeed, and that they can be hard to detect. As an example, we hide an attack in the random number generator and show that the randomness tests suggested by NIST fail to detect it. We advocate updating the NIST guidelines on random number testing to make them more appropriate for safety-critical and security-critical machine-learning applications.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员