Achieving low remote memory access latency remains the primary challenge in realizing memory disaggregation over Ethernet within the datacenters. We present EDM that attempts to overcome this challenge using two key ideas. First, while existing network protocols for remote memory access over the Ethernet, such as TCP/IP and RDMA, are implemented on top of the MAC layer, EDM takes a radical approach by implementing the entire network protocol stack for remote memory access within the Physical layer (PHY) of the Ethernet. This overcomes fundamental latency and bandwidth overheads imposed by the MAC layer, especially for small memory messages. Second, EDM implements a centralized, fast, in-network scheduler for memory traffic within the PHY of the Ethernet switch. Inspired by the classic Parallel Iterative Matching (PIM) algorithm, the scheduler dynamically reserves bandwidth between compute and memory nodes by creating virtual circuits in the PHY, thus eliminating queuing delay and layer 2 packet processing delay at the switch for memory traffic, while maintaining high bandwidth utilization. Our FPGA testbed demonstrates that EDM's network fabric incurs a latency of only $\sim$300 ns for remote memory access in an unloaded network, which is an order of magnitude lower than state-of-the-art Ethernet-based solutions such as RoCEv2 and comparable to emerging PCIe-based solutions such as CXL. Larger-scale network simulations indicate that even at high network loads, EDM's average latency remains within 1.3$\times$ its unloaded latency.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2018年4月8日
Arxiv
14+阅读 · 2018年4月6日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员