The Covid-19 pandemic has been a scourge upon humanity, claiming the lives of more than 5 million people worldwide. Although vaccines are being distributed worldwide, there is an apparent need for affordable screening techniques to serve parts of the world that do not have access to traditional medicine. Artificial Intelligence can provide a solution utilizing cough sounds as the primary screening mode. This paper presents multiple models that have achieved relatively respectable perfor mance on the largest evaluation dataset currently presented in academic literature. Moreover, we also show that performance increases with training data size, showing the need for the world wide collection of data to help combat the Covid-19 pandemic with non-traditional means.


翻译:Covid-19大流行病是人类的灾祸,夺去了全世界500多万人的生命,虽然疫苗正在全世界分发,但显然需要负担得起的筛选技术,为世界上无法获得传统医学的地区服务,人工智能可以用咳嗽声音作为主要筛选模式提供解决办法,本文介绍了在目前学术文献中提供的最大评价数据集方面相对可敬的多模式,此外,我们还表明,由于培训数据规模较大,绩效有所提高,表明需要在全世界广泛收集数据,帮助用非传统手段防治Covid-19大流行病。

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
6+阅读 · 2008年12月31日
A Survey on Data Augmentation for Text Classification
A Survey on Deep Learning for Named Entity Recognition
Arxiv
73+阅读 · 2018年12月22日
Arxiv
12+阅读 · 2018年9月15日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关VIP内容
专知会员服务
124+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
6+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员