Due to the superior performance, large-scale pre-trained language models (PLMs) have been widely adopted in many aspects of human society. However, we still lack effective tools to understand the potential bias embedded in the black-box models. Recent advances in prompt tuning show the possibility to explore the internal mechanism of the PLMs. In this work, we propose two token-level sentiment tests: Sentiment Association Test (SAT) and Sentiment Shift Test (SST) which utilize the prompt as a probe to detect the latent bias in the PLMs. Our experiments on the collection of sentiment datasets show that both SAT and SST can identify sentiment bias in PLMs and SST is able to quantify the bias. The results also suggest that fine-tuning can possibly augment the existing bias in PLMs.


翻译:由于表现优异,人类社会的许多方面广泛采用大规模预先培训语言模式(PLMs),然而,我们仍缺乏有效工具来理解黑箱模式中潜在的偏见,近期在快速调试方面的进展表明探索PLMs内部机制的可能性。在这项工作中,我们建议进行两个象征性的情绪测试:感官协会测试和感官转变测试(SST),它们利用快速检测来探测PLMs中的潜在偏见。我们在收集情绪数据集方面的实验表明,SAT和SST都能识别PLMs和SST中的情绪偏见。结果还表明,微调可能会增加目前对PLMs的偏见。

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年6月3日
Arxiv
28+阅读 · 2021年10月1日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员