Given a parametric polynomial curve $\gamma:[a,b]\rightarrow \mathbb{R}^n$, how can we sample a random point $\mathfrak{x}\in \mathrm{im}(\gamma)$ in such a way that it is distributed uniformly with respect to the arc-length? Unfortunately, we cannot sample exactly such a point-even assuming we can perform exact arithmetic operations. So we end up with the following question: how does the method we choose affect the quality of the approximate sample we obtain? In practice, there are many answers. However, in theory, there are still gaps in our understanding. In this paper, we address this question from the point of view of complexity theory, providing bounds in terms of the size of the desired error.


翻译:考虑到一个参数多角度曲线$\gamma:[a,b]\rightrow \mathbb{R ⁇ n$,我们如何对随机点 $\mathfrak{x ⁇ in\mathrm{im}(\gamma}) 进行抽样?不幸的是,即使假设我们能够进行精确的算术操作,我们也不能对这个点进行精确的抽样抽样。所以我们最后要回答以下问题:我们选择的方法如何影响我们获得的近似样本的质量?实际上,有很多答案。然而,理论上,我们的理解仍然存在差距。在本文中,我们从复杂理论的角度来处理这个问题,提供了理想错误大小的界限。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员