Generative Adversarial Networks (GANs) have shown remarkable success in modeling complex data distributions for image-to-image translation. Still, their high computational demands prohibit their deployment in practical scenarios like edge devices. Existing GAN compression methods mainly rely on knowledge distillation or convolutional classifiers' pruning techniques. Thus, they neglect the critical characteristic of GANs: their local density structure over their learned manifold. Accordingly, we approach GAN compression from a new perspective by explicitly encouraging the pruned model to preserve the density structure of the original parameter-heavy model on its learned manifold. We facilitate this objective for the pruned model by partitioning the learned manifold of the original generator into local neighborhoods around its generated samples. Then, we propose a novel pruning objective to regularize the pruned model to preserve the local density structure over each neighborhood, resembling the kernel density estimation method. Also, we develop a collaborative pruning scheme in which the discriminator and generator are pruned by two pruning agents. We design the agents to capture interactions between the generator and discriminator by exchanging their peer's feedback when determining corresponding models' architectures. Thanks to such a design, our pruning method can efficiently find performant sub-networks and can maintain the balance between the generator and discriminator more effectively compared to baselines during pruning, thereby showing more stable pruning dynamics. Our experiments on image translation GAN models, Pix2Pix and CycleGAN, with various benchmark datasets and architectures demonstrate our method's effectiveness.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员