It is well known that model selection via cross validation can be biased for time series models. However, many researchers have argued that this bias does not apply when using cross-validation with vector autoregressions (VAR) or with time series models whose errors follow a martingale-like structure. I show that even under these circumstances, performing cross-validation on time series data will still generate bias in general.


翻译:众所周知,通过交叉验证进行模型选择对于时间序列模型可能存在偏差。然而,许多研究者认为,当对向量自回归(VAR)模型或误差服从类鞅结构的时间序列模型使用交叉验证时,这种偏差并不适用。本文证明,即使在这些条件下,对时间序列数据执行交叉验证通常仍会产生偏差。

0
下载
关闭预览

相关内容

数学上,序列是被排成一列的对象(或事件);这样每个元素不是在其他元素之前,就是在其他元素之后。这里,元素之间的顺序非常重要。
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
VIP会员
相关资讯
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员